First Lecture of Machine Learning

Hung-yi Lee

Learning to say "yes/no" Binary Classification

Learning to say yes/no

Spam filtering

• Is an e-mail spam or not?

Recommendation systems

• recommend the product to the customer or not?

Malware detection

- Is the software malicious or not?
- Stock prediction
 - Will the future value of a stock increase or not with respect to its current value?

Binary Classification

Example Application: Spam filtering

Example Application: Spam filtering

$$f: X \to Y = \{yes, no\}$$

What does the function f look like?

$$y = f(x) = \begin{cases} yes & P(yes \mid x) \ge 0.5\\ no & P(yes \mid x) < 0.5 \end{cases}$$

How to estimate P(yes | x)?

Example Application: Spam filtering

• To estimate P(yes|x), collect examples first

- Some words frequently appear in the spam e.g., "free"
- Use the frequency of "free" to decide if an e-mail is spam
- Estimate P(yes | x_{free} = k)
 - x_{free} is the number of "free" in e-mail x

Regression

In training data, there is no email containing 3 "free".

Frequency of "Free" (x_{free}) in an e-mail x Problem: What if one day you receive an e-mail with 3 "free"

Frequency of "Free" (x_{free}) in an e-mail x

Regression

$f(x_{free}) = wx_{free} + b$ The output of f is not between 0 and 1

Frequency of "Free" (x_{free}) in an e-mail x **Problem:** What if one day you receive an e-mail with 6 "free"

Logit

vertical line: Probability to
be spam p(yes|x_{free}) (p)
p is always between 0 and 1

<u>vertical line</u>: logit(p) $logit(p) = ln\left(\frac{p}{1-p}\right)$

Logit

vertical line: Probability to
be spam p(yes|x_{free}) (p)
p is always between 0 and 1

vertical line: logit(p)

$$logit(p) = ln\left(\frac{p}{1-p}\right)$$

Logit

Store w' and b'

$$x_{free} = 3$$

$$\Rightarrow f'(x_{free}) = w' \times 3 + b' = 1.5$$

$$\Rightarrow logit(p) = ln\left(\frac{p}{1-p}\right) = 1.5$$

$$\Rightarrow p = 0.817 > 0.5$$
, so "yes"

$$f'(x_{free}) = w'x_{free} + b' > 0$$
$$\Rightarrow \ln\left(\frac{p}{1-p}\right) > 0$$
$$\Rightarrow p > 0.5 \Rightarrow "yes"$$

vertical line: logit(p)

$$logit(p) = ln\left(\frac{p}{1-p}\right)$$

Multiple Variables

Multiple Variables

Multiple Variables

- Of course, we can consider all words $\{t_1,\,t_2,\,...\,t_N\}$ in a dictionary

$$p: P(yes | x_{t_1}, x_{t_2} \cdots x_{t_N})$$

$$f(x_{t_1}, x_{t_2} \cdots x_{t_N}) = z = w_1 x_{t_1} + w_2 x_{t_2} + \dots + w_N x_{t_N} + b$$

$$= \vec{w} \cdot \vec{x} + b$$

$$\vec{x} = \begin{bmatrix} x_{t_1} \\ x_{t_2} \\ \vdots \end{bmatrix} \vec{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \end{bmatrix}$$

 X_{t_N}

 $|\mathcal{W}_N|$

Logistic Regression

$$z = \vec{w} \cdot \vec{x} + b \xrightarrow{\text{approximate}} \operatorname{logit}(p) = \ln\left(\frac{p}{1-p}\right)$$
$$p: P(yes \mid x_{t_1}, x_{t_2} \cdots x_{t_N})$$

- If the probability p = 1 or 0, ln(p/1-p) = +infinity or -infinity
- Can not do regression

Multiclass Classification

• Handwriting digit classification

This is Multiclass Classification

- Handwriting digit classification
 - Simplify the question: whether an image is "2" or not

feature of an image

 X_1

 X_2

- Handwriting digit classification
 - Simplify the question: whether an image is "2" or not

- Handwriting digit classification
 - Binary classification of 1, 2, 3 ...

If y₂ is the max, then the image is "2".

This is not good enough ...

Limitation of Logistic Regression

$$\begin{cases} yes & a \ge 0.5 \\ no & a < 0.5 \end{cases} \begin{cases} yes & z \ge 0 \\ no & z < 0 \end{cases}$$

 $z = w_1 x_1 + w_2 x_2 + b$

Input		Output
x ₁	x ₂	Ουτρατ
0	0	No
0	1	Yes
1	0	Yes
1	1	No

So we need neural network

Deep means many layers

Thank you for your listening!

Appendix

More reference

- http://www.ccs.neu.edu/home/vip/teach/MLcourse/2_ GD_REG_pton_NN/lecture_notes/logistic_regression_l oss_function/logistic_regression_loss.pdf
- http://mathgotchas.blogspot.tw/2011/10/why-is-errorfunction-minimized-in.html
- https://cs.nyu.edu/~yann/talks/lecun-20071207nonconvex.pdf
- http://www.cs.columbia.edu/~blei/fogm/lectures/glms .pdf
- http://grzegorz.chrupala.me/papers/ml4nlp/linearclassifiers.pdf